Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(5): 6902-6911, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36694474

RESUMO

C(sp)-H carboxylation with CO2 is an attractive route of CO2 utilization and is traditionally promoted by transition metal catalysts, and organocatalysis for the conversion remains rarely explored and challenging. In this article, triaminoguanidine-derived covalent organic frameworks (COFs) were used as platforms to develop heterogeneous organocatalysts for the reaction. We demonstrated that the COFs with guanidine cores and pyrazine linkers show high catalytic performance as a result of the cooperation between cores and linkers. The core is vitally important, which is deprotonated to the guanidinato group that binds and activates CO2. The pyrazine linker collaborates with the core to activate the C(sp)-H bond through hydrogen bonding. In addition, the COFs show acid- and base-responsive chromic behaviors thanks to the amphoteric nature of the core and the auxochromic effect of the pyrazine linker. The work opens up new avenues to organocatalysts for C-H carboxylation and chromic materials for sensing and switching applications.

2.
Inorg Chem ; 61(2): 902-910, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34978189

RESUMO

The exchangeable counterions in ionic metal-organic frameworks (IMOFs) provide facile and versatile handles to manipulate functions associated with the ionic guests themselves and host-guest interactions. However, anion-exchangeable stable IMOFs combining multiple anion-related functions are still undeveloped. In this work, a novel porous IMOF featuring unique self-penetration was constructed from an electron-deficient tris(pyridinium)-tricarboxylate zwitterionic ligand. The water-stable IMOF undergoes reversible and single-crystal-to-single-crystal anion exchange and shows selective and discriminative ionochromic behaviors toward electron-rich anions owing to donor-acceptor interactions. The IMOFs with different anions are good ionic conductors with low activation energy, the highest conductivity being observed with chloride. Furthermore, integrating Lewis acidic sites and nucleophilic guest anions in solid state, the IMOFs act as heterogeneous and recyclable catalysts to efficiently catalyze the cycloaddition of CO2 to epoxides without needing the use of halide cocatalysts. The catalytic activity is strongly dependent upon the guest anions, and the iodide shows the highest activity. The results demonstrate the great potential of developing IMOFs with various functions related to the guest ions included in the porous matrices.

3.
J Shanghai Jiaotong Univ Sci ; 27(1): 81-89, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34975264

RESUMO

The COVID-19 medical diagnosis method based on individual's chest X-ray (CXR) is achieved difficultly in the initial research, owing to difficulties in identifying CXR data of COVID-19 individuals. At the beginning of the study, infected individuals' CXRs were scarce. The combination of artificial intelligence and medical diagnosis has been advanced and popular. To solve the difficulties, the interpretability analysis of AI model was used to explore the pathological characteristics of CXR samples infected with COVID-19 and assist medical diagnosis. The dataset was expanded by data augmentation to avoid overfitting. Transfer learning was used to test different pre-trained models and the unique output layers were designed to complete the model training with few samples. In this study, the output results of four pre-trained models were compared in three different output layers, and the results after data augmentation were compared with the results of the original dataset. The control variable method was used to conduct independent tests of 24 groups. Finally, 99.23% accuracy and 98% recall rate were obtained, and the visual results of CXR interpretability analysis were displayed. The network of COVID-19 interpretable diagnosis algorithm has the characteristics of high generalization and lightweight. It can be quickly applied to other urgent tasks with insufficient experimental data. At the same time, interpretability analysis brings new possibilities for medical diagnosis.

4.
Chemistry ; 27(66): 16415-16421, 2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34599532

RESUMO

The assembly of two tripyridinium-tricarboxylate ligands and different metal ions leads to seven isostructural MOFs, which show novel 2D→2D supramolecular entanglement featuring catenane-like interlocking of tricyclic cages. The MOFs show tripyridinium-afforded and metal-modulated photoresponsive properties. The MOFs with d10 metal centers (1-Cd, 1-Zn, 2-Cd, 2-Zn) show fast and reversible photochromism and concomitant fluorescence quenching, 1-Ni displays slower photochromism but does not fluoresce, and 1-Co and 2-Co are neither photochromic nor fluorescent. It is shown here that the network entanglement dictates donor-acceptor close contacts, which enable fluorescence originated from interligand charge transfer. The contacts also allow photoinduced electron transfer, which underlies photochromism and concomitant fluorescence response. The metal dependence in fluorescence and photochromism can be related to energy transfer through metal-centered d-d transitions. In addition, 1-Cd is demonstrated to be a potential fluorescence sensor for sensitive and selective detection of UO2 2+ in water.

5.
J Am Chem Soc ; 143(23): 8838-8848, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34076423

RESUMO

Positive cooperative binding, a phenomenon prevalent in biological processes, holds great appeal for the design of highly sensitive responsive molecules and materials. It has been demonstrated that metal-organic frameworks (MOFs) can show positive cooperative adsorption to the benefit of gas separation, but potential binding cooperativity is largely ignored in the study of sensory MOFs. Here, we report the first demonstration of positive cooperative protonation of a MOF and the relevant pH response in fluorescence and proton conduction. The MOF is built of Zr-O clusters and bipyridyl-based tetracarboxylate linkers and has excellent hydrolytic stability. It shows a unique pH response that features two synchronous abrupt turn-off and turn-on fluorescent transitions. The abrupt transitions, which afford high sensitivity to small pH fluctuations, are due to cooperative protonation of the pyridyl sites with a Hill coefficient of 1.6. The synchronous dual-emission response, which leads to visual color change, is ascribable to proton-triggered switching between (n, π*) and (π, π*) emissions. The latter emission can be quenched by electron donating anion-dependent through photoinduced electron transfer and ground-state charge transfer. Associated with cooperative protonation, the proton conductivity of the MOF is abruptly enhanced at low pH by two orders, but overhigh acid concentration is adverse because excessive anions can interrupt the conducting networks. Our work shows new perspectives of binding cooperativity in MOFs and should shed new light on the development of responsive fluorescent MOFs and proton conductive materials.

6.
ACS Appl Mater Interfaces ; 13(22): 26431-26440, 2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34033712

RESUMO

The recently emerging vinylene-linked covalent organic frameworks (VCOFs) stand out from other COFs with exceptional chemical stability and favorable light-emitting properties, promising sensing applications for acids/bases or in strong acidic/basic conditions. Here we systematically investigated the reversible color and fluorescent response of a VCOF functionalized with pyridyl groups to acids/pH. The COF was synthesized with a record surface area for VCOFs and shows reversible hydrochromic and acidochromic behaviors and concomitant fluorescence quenching. The mechanisms were probed with systematical experimental comparison with relevant COFs and model molecules in combination with orbital analysis. The response is related to significant electronic changes in the ground and photoexcited states as a result of protonation or hydrogen bonding at pyridyl sites. The COF in aqueous dispersion displays a reversible fluorescence transition with pH change, which follows the Hill equation for multisite protonation. The COF-modified test paper shows immediate and remarkable color change and fluorescence turn-off/on when alternately exposed to HCl and NH3 gases. The work illustrates the great potential of developing highly robust sensory COFs through the vinylene approach.

7.
ACS Appl Mater Interfaces ; 13(17): 20380-20387, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33878258

RESUMO

Sensory materials that show color and/or fluorescence changes in response to specific gases or vapors have important applications in many fields. Here, we report the postsynthetic preparation of novel sensory metal-organic frameworks (MOFs) and their multiple responsive properties. Through postsynthetic N-amination, the 2,2'-bipyridyl spacers in a Zr(IV) MOF are partially transformed into N-aminobipyridinium. The new MOF (Zr-bpy-A) shows chromic behavior toward ammonia and amines because the electron-deficient pyridinium groups form charge-transfer complexes with amino moieties. It also shows a unique chromic response to formaldehyde owing to the Schiff-base condensation with the N-amino groups. Furthermore, the N-amino group can be used to graft different polycyclic aromatic hydrocarbons, which endow the MOF with strong fluorescence of variable colors and afford a high-contrast fluorescence response to ammonia/amines and formaldehyde associated with the chromic response. The presence of the unquaternized bipyridyl group also leads to a fluorescence response to HCl. The multiple responsive behaviors hold appeal for applications in sensing, switching, and antifake marking, which are illustrated with a test paper and writing ink.

8.
Inorg Chem ; 59(20): 15421-15429, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33022178

RESUMO

Due to its great relevance to environmental, biological, and chemical processes, the precise detection of pH or acidic/basic species is an ongoing and imperative need. In this context, pH-sensitive luminescent systems are highly desired. We reported a three-dimensional Zn(II) MOF synthesized from a bipyridyl-tetracarboxylic ligand and composed of 4-fold interpenetrated diamond frameworks. Because the steric hindrance in the ligand prevents metal coordination with the pyridyl group, the MOF features free basic N sites accessible to the small H+ ions, which renders pH responsivity. The aqueous dispersion exhibits an abrupt, high-contrast, and reversible on-off fluorescence transition in the narrow pH range of 5.4-6.2. The sensitive bistable system can be used for the precise monitoring of pH within the range and for use as a pH-triggered optical switch. The responsive mechanism through pyridyl protonation is collaboratively supported by data fitting, absorption spectra, and molecular orbital calculations. In particular, spectral and theoretical analyses reveal the destruction of n → π* transitions and the appearance of intramolecular charge-transfer transitions upon pyridyl protonation. Moreover, by virtue of the pH-responsive fluorescence, the MOF shows appealing sensing performance for the detection of 3-nitropropionic acid, a major mycotoxin in moldy sugar cane.


Assuntos
Corantes Fluorescentes/química , Estruturas Metalorgânicas/química , Micotoxinas/análise , Nitrocompostos/análise , Propionatos/análise , Fluorescência , Concentração de Íons de Hidrogênio , Limite de Detecção , Espectrometria de Fluorescência
9.
ACS Appl Mater Interfaces ; 12(39): 43958-43966, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32880426

RESUMO

Smart materials that respond to chemical stimuli with color or luminescence changes are highly desirable for daily-life and high-tech applications. Here, we report a novel porous metal-organic framework (MOF) that shows multiple, selective, and discriminative responsive properties owing to the combination of different functional ingredients [tripyridinium chromogen, Eu(III) luminophore, cationic framework, and special porous structure]. The MOF contains two interpenetrated three-dimensional cationic coordination networks built of a tetrahedral [Eu4(µ3-OH)4] cluster and a tripyridinium-tricarboxylate zwitterionic linker. It shows reversible and discriminative chromic response to aliphatic amines and aniline through different host-guest interactions between electron-deficient pyridinium and electron-rich amines. The size- and shape-selective response to aliphatic amines is ascribed to the radical formation through host-guest electron transfer, whereas the response to aniline is ascribed to the formation of sandwich-type acceptor-donor-acceptor complexes. The MOF is capable of reversible anion exchange with various anions and shows selective and discriminative ionochromic response to iodide, bromide, and thiocyanate, which is attributed to charge-transfer complexation. The above chromic behaviors are accompanied by efficient quenching of Eu(III) photoluminescence. The MOF represents a multi-stimuli dual-output responsive system. It can be used for discrimination and identification of anions and amines. The potential use in invisible printing, reusable sensory films, and optical switches was demonstrated by the ink and the membrane made of the MOF and organic polymers.

10.
Dalton Trans ; 49(22): 7488-7495, 2020 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-32441289

RESUMO

A two-dimensional Cd(ii) metal-organic framework (MOF) was constructed from a tris(pyridinium)-based hexacarboxylate zwitterionic ligand. The MOF shows a novel fashion of 2-fold 2D → 2D parallel entanglement. It is the entanglement that dictates close interlayer contacts between carboxylate (electron donor) and pyridinium (acceptor), which in turn impart the MOF with reversible photochromic properties through photoinduced electron transfer (PET). This is an extension of PET-based photochromism from bipyridinium to multipyridinium compounds. Thanks to the photoresponsive behaviour, the fluorescence of the MOF can be reversibly modulated or switched by photoirradiation. Besides, the fluorescence of the water-stable MOF in aqueous dispersion is very sensitive to nitrofuran antibiotics with high selectivity, and therefore the MOF is a good candidate of efficient and regenerable sensing material for determination of the antibiotics in water media.


Assuntos
Antibacterianos/análise , Corantes Fluorescentes/química , Estruturas Metalorgânicas/química , Nitrofuranos/análise , Compostos de Piridínio/química , Corantes Fluorescentes/síntese química , Estruturas Metalorgânicas/síntese química , Processos Fotoquímicos , Compostos de Piridínio/síntese química , Espectrometria de Fluorescência
11.
Chem Commun (Camb) ; 56(44): 5929-5932, 2020 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-32342972

RESUMO

The Zn(ii) MOF with a tripyridinium-based hexacarboxylate shows direct color change on exposure to small primary amines and UV-assisted color response on exposure to small alcohols. The reversible, group-specific and size-selective chemochromic/chemophotochromic behaviours are ascribed to spontaneous/photoinduced guest-to-host electron transfer within the unique confined space furnished with electron-deficient sites.

12.
Appl Opt ; 58(29): 8007-8012, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31674354

RESUMO

In order to meet the targeted dispersion requirements of applications, hybridized modes of coupled waveguides, whose dispersion characteristics can be significantly altered around their mode cross-point, have been recently investigated. The applications have been applied to microresonators based on concentric waveguides with a thin silicon nitride layer. However, it is still challenging to achieve a low and flattened anomalous dispersion profile just by optimizing the gap width between the waveguides. We propose to investigate the dispersion characteristics of coupled silicon nitride waveguides with a partially etched gap. It is shown that low and broadband anomalous dispersion can be achieved based on relatively thin 515 nm thick silicon nitride layer waveguides. The mechanism of a partially etched gap on dispersion engineering can be attributed to the tuning of the coupling strength between the waveguides. Therefore, when combined with other design parameters, it offers an additional "tuning knob" of advanced dispersion engineering when designing such coupled-waveguide devices for nonlinear photonic applications.

13.
ACS Appl Mater Interfaces ; 11(50): 47112-47120, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31738506

RESUMO

Sensitive fluorescence turn-on response to specific substances is highly desired for development of chemical sensors and switches. Here we utilized a "two-in-one" strategy to prepare ionic metal-organic frameworks (MOFs) functionalized with the cationic bipyridinium receptors at the frameworks and anionic fluorescent indicators in the pores. The MOFs are rendered a fluorescence-resting state because the indicator's fluorescence is efficiently quenched by the ground-state charge-transfer (CT) complexation between the indicator and receptor. Addition of an alkylamine efficiently turns on the fluorescence because the indicator is displaced by the CT complexation between alkylamine with receptor. The turn-on response is highly specific to alkylamines. The MOFs can be used as recyclable sensors for selective and sensitive detection of alkylamines, with ultralow detection limits (0.5 nM). The fluorescence in solid state can be reversibly switched on and off with high contrast. The sensitive and high-contrast response can be attributed to the space confinement effects of the porous frameworks. The confined space can significantly enhance indicator-receptor and analyte-receptor interactions, and thereby both the quenching efficiency in the off state and the displacement efficiency in the on state are amplified.

14.
Mikrochim Acta ; 186(12): 762, 2019 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712906

RESUMO

The metal-organic frameworks MIL-101 and sulfo-MIL-101 were used to modify graphite paste electrodes (GPEs) to obtain sensors for determination of dopamine (DA). Taking advantage of the catalytic activity of metal-organic frameworks (MOFs) and of the electrical conductivity of graphite, the modified GPEs show enhanced voltammetric responses, and the GPE modified with the sulfo-MOF displays superior sensitivity when operated at a working potential of -0.4 to 0.8 V (vs. Ag/AgCl). The sensor works in the 0.07 to100 µM DA concentration range and has a 43 nM detection limit. It is concluded that the sulfo group provides open sites for efficient electrostatic and hydrogen bonding interactions, which facilitates electron transfer. Graphical abstractSchematic representation of the structure of the sulfo-functionalized MOF (sulfo-MIL-101) and the different voltammetric signals of dopamine at the graphite paste electrodes (GPEs) modified with sulfo-MIL-101 and the parent MOF (MIL-101).


Assuntos
Dopamina/análise , Técnicas Eletroquímicas/instrumentação , Grafite/química , Estruturas Metalorgânicas/química , Dopamina/química , Técnicas Eletroquímicas/métodos , Eletrodos , Limite de Detecção , Oxirredução
15.
Inorg Chem ; 58(20): 14167-14174, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31557004

RESUMO

A novel metal-organic framework (MOF), formulated as [Cd2(TTVTC)Cl2(H2O)3]·2H2O (1), was synthesized from a tetracarboxylate ligand ([TTVTC]2-) functionalized with the thiazolothiazole extended viologen (TTV2+) fluorophore. The MOF features three-dimensional (10,3)-d frameworks with 6-fold interpenetration. The MOF exhibits reversible photochromism, due to photoinduced electron transfer from carboxylate to TTV2+. The photoactivity benefits from the electron donor-acceptor contacts enabled by mutual interpenetration of the frameworks. This is the first demonstration of photochromism in TTV2+ derivatives. In addition, the fluorescence arising from the TTV2+ fluorophore can be reversibly modulated during the photochromic process. The work demonstrates the great potential of extended viologen based ligands in the construction of MOFs with dual photomodulable optical properties, which could find future applications in photoelectronics.

16.
ACS Appl Mater Interfaces ; 10(13): 11056-11062, 2018 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-29546751

RESUMO

The development of selective sensing materials for amine detection has received considerable attentions because amines have high toxicity and exist widely. In this article, we demonstrate for the first time that a degree of discriminative detection of alkylamines can be achieved by a metal-organic coordination material. The material is derived from CdII and 4,4'-bipyridinium-1,1'-bis(phenylene-3-carboxylate), shows 1D channels lined with electron-deficient viologen chromophores, and exhibits different colors upon contact with amine vapors of different molecular sizes and types (primary, secondary, and tertiary). The vapochromism is attributable to electron transfer from the amine group to viologen. The discrimination between amines is because the analyte-receptor interactions, which either directly mediate or indirectly affect electron transfer, are influenced by the number of the N-H bonds in the amine molecule, the size of the amine molecule relative to the receptor channel and the steric hindrance for the electron donor-acceptor contacts. The material also shows reversible photo- and hydrochromism owing to stimuli-induced reversible electron transfer. The compound can be deposited in paper simply by spraying the mixture solution of the starting metal salt and the ligand. The paper can be used as portable test strips for visual and differentiable detection of amines and as erasable inkless printing medium.

17.
BMC Genet ; 15: 144, 2014 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-25511509

RESUMO

BACKGROUND: Sheep are valuable resources for the animal fibre industry. Therefore, identifying genes which regulate wool growth would offer strategies for improving the quality of fine wool. In this study, we employed Agilent sheep gene expression microarray and proteomic technology to compare the gene expression patterns of the body side (hair-rich) and groin (hairless) skins of Aohan fine wool sheep (a Chinese indigenous breed). RESULTS: Comparing the body side to the groin skins (S/G) of Aohan fine wool sheep, the microarray study revealed that 1494 probes were differentially expressed, including 602 more highly expressed and 892 less highly expressed probes. The microarray results were verified by means of quantitative PCR. Cluster analysis could distinguish the body side skin and the groin skin. Based on the Database for Annotation, Visualization and Integrated Discovery (DAVID), 38 of the differentially expressed genes were classified into four categories, namely regulation of receptor binding, multicellular organismal process, protein binding and macromolecular complex. Proteomic study revealed that 187 protein spots showed significant (p < 0.05) differences in their respective expression levels. Among them, 46 protein entries were further identified by MALDI-TOF/MS analyses. CONCLUSIONS: Microarray analysis revealed thousands of differentially expressed genes, many of which were possibly associated with wool growth. Several potential gene families might participate in hair growth regulation. Proteomic analysis also indentified hundreds of differentially expressed proteins.


Assuntos
Carneiro Doméstico/genética , Pele/metabolismo , Lã/crescimento & desenvolvimento , Animais , Feminino , Regulação da Expressão Gênica , Masculino , Análise de Sequência com Séries de Oligonucleotídeos , Carneiro Doméstico/crescimento & desenvolvimento , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...